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Abstract. The knowledge of absorption and scattering characteristics of small par-
ticles is required for a reliable evaluation of the climate forcing caused by clouds and
aerosols as well as for studying the physical and chemical properties of atmospheric
particulates using remote sensing techniques. Since many particles suspended in
the atmosphere are nonspherical, their optical properties may not be adequately
described by the classical Lorenz-Mie theory and must be determined using ad-
vanced theoretical and experimental techniques. In this chapter, we describe how
electromagnetic scattering by small nonspherical particles can be computed and
measured; analyze the main effects of nonsphericity on electromagnetic scatter-
ing; and discuss various implications of these effects in computations of the earth’s
radiation balance and atmospheric remote sensing.

1 Introduction

Aerosols and clouds affect the earth’s radiation balance by scattering and
absorbing the short-wave radiation coming from the sun and the long-wave
radiation emitted by the surface. The evaluation of this radiative effect re-
quires the knowledge of the optical properties of aerosol and cloud particles
(Lacis and Mishchenko 1995; Rossow and Schiffer 1999). This knowledge is
also needed for analyses of remote sensing measurements based on passive
and active techniques (Stephens 1994).

Although it is well recognized that many particles suspended in the atmo-
sphere are nonspherical, the convenient availability of the Lorenz-Mie theory
has led to the widespread practice of treating their optical properties as if the
particles were perfect spheres. However, it is becoming increasingly obvious
that this approach can cause significant quantitative errors and must be re-
placed by an analysis strategy based on specific knowledge of scattering and
absorption characteristics of nonspherical particles. This improved strategy
has been made possible by recent advances in numerical and experimental
techniques and the rapid improvement of scientific workstations (Mishchenko
et al. 2000a).

In this chapter we first introduce the necessary theoretical concepts and
terminology and describe how the optical properties of nonspherical particles
can be computed theoretically and measured using modern laboratory tech-
niques. Then we discuss the main effects of nonsphericity on electromagnetic

In Expolring the Atmosphere by Remote Sensing Techniques 
R. Guzzi, Editor (Springer-Verlag, Berlin, 2003), pp. 77   127_



78 Michael I. Mishchenko and Larry D. Travis

scattering patterns and stress the need for a statistical approach in model-
ing scattering and absorption characteristics of size and shape distributions
of natural aerosol and cloud particles. Finally, we demonstrate how particle
nonsphericity can affect computations of the earth’s radiation balance and
analyses of remote sensing measurements.

2 Polarization Characteristics
of Electromagnetic Radiation

The mathematical description of all classical optics phenomena is based on
the Maxwell equations for the macroscopic electromagnetic field (Jackson
1998):

∇ · D = ρ, (1)
∇ × E = −∂B/∂t, (2)
∇ · B = 0, (3)

∇ × H = J+ ∂D/∂t, (4)

where t is time,E the electric andH the magnetic field,B the magnetic induc-
tion, D the electric displacement, and ρ and J the macroscopic charge density
and current density, respectively. All quantities appearing in the Maxwell
equations are functions of time and spatial coordinates. The vector fields
entering (1)–(4) are related by

D = ε0E+P, (5)
H = B/µ0 − M, (6)

where P is the electric polarization, M the magnetization, and ε0 the elec-
tric permittivity and µ0 the magnetic permeability of free space. Equations
(1)–(6) are insufficient for a unique determination of the electric and mag-
netic fields from a given distribution of charges and currents and must be
supplemented with the constitutive relations

J = σE, (7)
B = µH, (8)
P = ε0χE , (9)

where σ is the conductivity, µ the permeability, and χ the electric suscepti-
bility. For linear and isotropic media, σ, µ, and χ are scalars independent of
the fields.

The field vectors E, D, B, and H may be discontinuous across an in-
terface separating one medium from another. The boundary conditions at
such an interface can be derived from the integral equivalents of the Maxwell
equations:
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(D2 − D1) · n̂ = ρS , n̂× (H2 − H1) = 0 (finite conductivity)
(B2 − B1) · n̂ = 0, n̂× (E2 − E1) = 0 , (10)

where n̂ is the local normal to the interface separating media 1 and 2 and
pointing toward medium 2 and ρS is the surface charge density. The bound-
ary conditions (10) are useful in solving the Maxwell equations in different
adjacent regions with continuous physical properties and then linking the
partial solutions to determine the fields throughout all space.

A fundamental feature of the Maxwell equations is that they allow for
a simple traveling wave solution which represents the transport of electro-
magnetic energy from one point to another and embodies the concept of a
perfectly monochromatic parallel beam of light. This solution is a plane elec-
tromagnetic wave propagating in a homogeneous medium without sources
and is given by

E(r, t) = E0 exp(ik · r − iωt), H(r, t) = H0 exp(ik · r − iωt). (11)

The vectors E0,H0, and k are assumed to be constant and the wave vector
k may, in general, be complex: k = kR + ikI. Hence,

E(r, t) = E0 exp(−k1 · r) exp(ikR · r − iωt), (12)

H(r, t) = H0 exp(−k1 · r) exp(ikR · r − iωt). (13)

E0 exp(−kI · r) and H0 exp(−kI · r) are the amplitudes of the electric and
magnetic waves, while kR ·r−ωt is their phase. kR is normal to the surfaces of
constant phase, whereas kI is normal to the surfaces of constant amplitude.
The electromagnetic wave is called homogeneous when kR and kI are parallel;
otherwise it is called inhomogeneous. Surfaces of constant phase propagate
in the direction of kR with the phase velocity ν = ω/|kR|.

The Maxwell equations for the plane wave take the form

k · E0 = 0, (14)
k · H0 = 0, (15)
k × E0 = ωµH0, (16)
k × H0 = −ωεE0, (17)

where ε = ε0(1+χ)+iσ/ω is the complex permittivity. The first two equations
indicate that the plane electromagnetic wave is transverse: both E0 and H0
are perpendicular to k. Furthermore, E0 and H0 are mutually perpendicular.
Equations (11) and (16) yield H(r, t) = (ωµ)−1k×E(r, t). Therefore, a plane
electromagnetic wave can always be considered in terms of only the electric
field.

By taking the vector product of both sides of (16) with k and using
(14) and (17), we have k · k = ω2εµ In the practically important case of a
homogeneous plane wave, the complex wave vector can be written as k =
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(kR + ikI)n̂ where n̂ is a real unit vector in the direction of propagation and
both kR and kI are nonnegative. We then obtain

k = kR + ikI = ω
√
εµ = ωm/c, (18)

where k is the wave number, c = 1
/√
ε0µ0 is the speed of light in a vacuum,

and
m = mR + imI =

√
εµ/ε0µ0 = c

√
εµ (19)

is the complex refractive index with nonnegative real, mR, and imaginary,
mI, parts. Thus, the plane homogeneous wave has the form

E(r, t) = E(r)e−iωt = E0 exp
(−ωc−1mIn̂ · r) exp

(−iωc−1mRn̂ · r − iωt
)
.

(20)
If the imaginary part of the refractive index is nonzero, then it determines the
decay of the amplitude of the wave as it propagates through the medium. In
this case the medium is absorbing. The real part of the refractive index deter-
mines the phase velocity of the wave: ν = c/mR. For a vacuum, m = mR = 1
and ν = c. The time-averaged Poynting vector of the homogeneous plane
wave is

〈S(r)〉=1
2
Re [E(r) × H∗(r)]=

1
2
Re

{√
ε/µ

}
|E0|2 exp(−2ωc−1mIn̂ · r)n̂.

(21)
Thus, 〈S(r)〉 is in the direction of propagation and its absolute value I(r) =
|〈S(r)〉|, called intensity, is exponentially attenuated if the medium is ab-
sorbing: I(r) = I(0) exp(−αn̂ · r). The absorption coefficient is α = 4πmI/λ,
where λ = 2πc/ω is the free-space wavelength. The intensity has the dimen-
sion of monochromatic energy flux: [energy/(area × time)].

Most photometric and polarimetric optical instruments cannot measure
the fields associated with a beam of light but rather measure quantities that
are time averages of quadratic combinations of field vector components and
have the dimension of the intensity. To define these quantities, we will use the
spherical coordinate system associated with a fixed right-handed Cartesian
coordinate system (Fig. 1). The direction of propagation of a plane electro-
magnetic wave is specified by a unit vector n̂ or, equivalently, by a couple
(ϑ, ϕ), where ϑ ∈ [0, π] is the polar angle and ϕ ∈ [0, 2π] is the azimuth
angle. The ϑ and ϕ components of the electric field vector are denoted as Eϑ

and Eϕ, respectively. The component Eϑ = Eϑϑ̂ lies in the meridional plane,
whereas the component Eϕ = Eϕϕ̂ is perpendicular to this plane; ϑ̂ and ϕ̂
are the corresponding unit vectors such that n̂ = ϑ̂ × ϕ̂. Consider a plane
electromagnetic wave propagating in a homogeneous nonabsorbing medium
(kI = 0) and given by

E(r, t) = E0 exp(ikn̂ · r − iωt). (22)

The so-called Stokes parameters I, Q, U , and V are then defined as the
elements of a real 4 × 1 column vector I, otherwise known as the Stokes
vector, as follows:
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Fig. 1. Spherical coordinate system used to define the Stokes parameters.

I =


I
Q
U
V

 =
1
2

√
ε

µ


E0ϑE

∗
0ϑ + E0ϕE∗

0ϕ

E0ϑE
∗
0ϑ − E0ϕE∗

0ϕ

−E0ϑE∗
0ϕ − E0ϕE∗

0ϑ

i(E0ϕE∗
0ϑ − E0ϑE∗

0ϕ

 . (23)

The first Stokes parameter, I, is equal to the intensity [(21) with with mI =
0 and real ε and µ]. The Stokes parameters Q, U , and V have the same
dimension of monochromatic energy flux and describe the polarization state
of the wave. It is easy to verify that the Stokes parameters are related by the
identity

I2 ≡ Q2 + U2 + V 2. (24)

The definition of a monochromatic plane electromagnetic wave given by
(22) implies that the complex amplitude E0 is constant. In reality, this quan-
tity often fluctuates in time. Although the typical frequency of fluctuations
is much smaller than the angular frequency ω, it is still so high that most op-
tical devices are incapable of tracing the instantaneous values of the Stokes
parameters but rather measure averages of Stokes parameters over a rela-
tively long period of time. Therefore, we must modify the definition of the
Stokes parameters for such quasi-monochromatic beam of light as follows:


I
Q
U
V

 =
1
2

√
ε

µ


〈E0ϑE∗

0ϑ〉 + 〈E0ϕE∗
0ϕ〉

〈E0ϑE∗
0ϑ〉 − 〈E0ϕE∗

0ϕ〉
−〈E0ϑE∗

0ϕ〉 − 〈E0ϕE∗
0ϑ〉

i〈E0ϕE∗
0ϑ〉 − i〈E0ϑE∗

0ϕ〉

 , (25)

where 〈...〉 denotes an average over a time interval long compared with the
typical period of fluctuation. When two or more quasi-monochromatic beams
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propagating in the same direction are mixed incoherently (i.e., assuming no
permanent phase relationships between the separate beams), the Stokes vec-
tor of the mixture is equal to the sum of the Stokes vectors of the individual
beams:

I =
∑

n

In, (26)

where n numbers the beams.
The identity (24) is not, in general, valid for a quasi-monochromatic beam.

Instead, we have (Chandrasekhar 1960; Mishchenko et al. 2001)

I2 ≥ Q2 + U2 + V 2. (27)

The equality holds only if E0ϑ(t) and E0ϕ(t) are completely correlated. In
this case the beam is said to be fully (or completely) polarized. This definition
includes a monochromatic wave, but is more general. If E0ϑ(t) and E0ϕ(t)
are totally uncorrelated and 〈E0ϑE∗

0ϑ〉 = 〈E0ϕE∗
0ϕ〉, then Q = U = V =

0, and the quasi-monochromatic beam of light is said to be unpolarized (or
natural). In view of (27), it is always possible to mathematically decompose
any quasi-monochromatic beam into two parts, one unpolarized with a Stokes
vector [I −

√
Q2 + U2 + V 2, 0, 0, 0]�, and one fully polarized, with a Stokes

vector [
√
Q2 + U2 + V 2, Q, U, V ]�, where � stands for “transpose.” Thus

the intensity of the fully polarized component is
√
Q2 + U2 + V 2 so that

the degree of (elliptical) polarization of the quasi-monochromatic beam is
P =

√
Q2 + U2 + V 2/I. P vanishes for unpolarized light and is equal to 1

for fully polarized light. For a partially polarized beam (0 < P < 1) with
V 
= 0, the sign of V indicates the preferential handedness of the vibration
ellipses described by the endpoint of the electric vector: a positive V indicates
left-handed polarization (the endpoint of the electric vector preferentially
rotates in the anti-clockwise direction when viewed by an observer looking in
the direction of light propagation) and a negative V indicates right-handed
polarization. When U = 0, the ratio PQ = −Q/I is often called the degree of
linear polarization. PQ is positive when the vibrations of the electric vector
in the ϕ direction (i.e., in the direction perpendicular to the meridional plane
of the beam) dominate those in the ϑ direction, and is negative otherwise.

3 Scattering, Absorption, and Emission
by an Arbitrary Particle

The presence of an object with an index of refraction different from that of the
surrounding medium changes the electromagnetic field that would otherwise
exist in an unbounded homogeneous space. The difference of the total field
in the presence of the object and the original field that would exist in the
absence of the object can be thought of as the field scattered by the object.
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Fig. 2. Schematic representation of the electromagnetic scattering problem.

Hence, the total field is equal to the vector sum of the incident (original) field
and the scattered field.

Consider a finite scattering object in the form of a single body or an aggre-
gate imbedded in an infinite, homogeneous, nonabsorbing medium (Fig. 2).
Mathematically this is equivalent to dividing all space into two regions: the
finite interior region VINT occupied by the scatterer and the infinite exterior
region VEXT. The region VINT is filled with an isotropic, linear, and possi-
bly inhomogeneous material. Assuming that all fields and sources are time-
harmonic, e.g., E(r, t) = E(r) exp(−iωt), and that the host medium and
the scatterer are nonmagnetic, it can be shown that the time-independent
part of the electric field satisfies the volume integral equation (Saxon 1955b;
Mishchenko et al. 2001)

E(r) = Einc(r) +Esca(r)
= Einc(r) + k21

∫
VINT

d3r′ ↔
G(r, r′) · E(r′)[m2(r′) − 1],

(28)

where r ∈ VINT ∪ VEXT, Einc(r) is the incident field, k1 the wave num-
ber in the exterior region, m(r) = m2(r)/m1 = k2(r)/k1 the refractive in-
dex of the interior region relative to that of the exterior region,

↔
G(r, r′) =

[
↔
I +k−2

1 ∇ ⊗ ∇]× [ exp(ik1|r − r′|)/4π|r− r′|] the free space dyadic Green’s
function,

↔
I the identity dyad, and ⊗ denotes a dyadic product of two vectors.

This equation expresses the total electric field everywhere in space in terms
of the incident field and the total field inside the scattering object. Since the
latter is not known in general, one must solve (28) numerically or analytically.
As a first step, the internal field can be approximated by the incident field.
The resulting total field is substituted in the integral on the right-hand side
of (28) in order to compute an improved approximation, and this iterative
process is continued until the total field converges within a given numerical
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accuracy. This procedure shows that the total electric field can be expressed
in terms of the incident field as follows:

E(r) = Einc(r) +
∫

VINT

d3r′ ↔
G(r, r′) ·

∫
VINT

d3r′′ ↔
T (r′, r′′) · Einc(r′′), (29)

where
↔
T is the so-called dyad transition operator (Tsang et al. 1985).

Let us now choose an arbitrary point O close to the geometrical center
of the scattering object as the common origin of all position vectors (Fig. 2).
Usually one is interested in calculating the scattered field in the so-called
far-field zone, i.e., assuming that k1r � 1 and that r is much larger than the
dimensions of the scattering object (r � r′). Since |r−r′| = r[1−2r′ · r̂r−1+
r′2r−2]1/2 =

r→∞ r − r′ · r̂, where r̂ = r/r is the unit vector in the direction of

r, (28) yields

Esca(r) =
r→∞

eik1r

r

k21
4π

(
↔
I −r̂ ⊗ r̂) ·

∫
VINT

d3r′[m2(r′) − 1]E(r′)e  ik1r′·r̂ . (30)

This important formula shows that the scattered field at a large distance
from the object behaves as an outgoing transverse spherical wave. Indeed, the
identity dyad in the spherical coordinate system centered at the origin is given
by

↔
I = r̂⊗r̂+ϑ̂⊗ϑ̂+ϕ̂⊗ϕ̂. Therefore, the factor ↔

I −r̂⊗r̂ = ϑ̂⊗ϑ̂+ϕ̂⊗ϕ̂ ensures
that the scattered wave in the far-field zone is transverse: r̂ · Esca(r) =

r→∞ 0.
Hence only the ϑ and ϕ components of the electric vector of the scattered field
are nonzero. Furthermore, the scattered field decays inversely with distance
r from the scattering object. Equation (30) can be rewritten as

Esca(r) =
r→∞ Esca

1 (r̂) exp(ik1r)/r, r̂ · Esca
1 (r̂) = 0, (31)

where the vector Esca(r̂) is independent of r and describes the angular dis-
tribution of the scattered radiation in the far-field zone.

Assuming that the incident field is a plane electromagnetic wave given by

Einc(r) = Einc
0 exp(ik1n̂inc · r) (32)

and using (29), we derive for the far-field zone

Esca(n̂scar) =
r→∞ r

−1 exp(ik1r)
↔
A(n̂sca, n̂inc) · Einc

0 , (33)

where n̂sca = r̂ and the scattering dyad
↔
A is given by

↔
A(n̂sca, n̂inc) = (4π)−1(

↔
I −n̂sca ⊗ n̂sca) · ∫

VINT
d3r′ exp(−ik1n̂sca · r′)

× ∫
VINT

d3r′′ ↔
T (r′, r′′) exp(ik1n̂inc · r′′).

(34)

The elements of the scattering dyad have the dimension of length. It follows
from (31) and (34) that n̂sca·↔

A(n̂sca, n̂inc) = 0. Because the incident field given

_
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by (32) is a transverse wave with electric vector perpendicular to the direction
of propagation, the dot product

↔
A(n̂sca, n̂inc) · n̂inc is not defined by (33). We

complete the definition by taking this product to be zero. As a consequence,
only four components of the scattering dyad are independent. It is, therefore,
convenient to formulate the scattering problem in the spherical coordinate
system centered at the origin and introduce the so-called 2 × 2 amplitude
matrix S which describes the transformation of the ϑ and ϕ components
of the incident plane wave into the ϑ and ϕ components of the scattered
spherical wave:[

Esca
ϑ (n̂scar)

Esca
ϕ (n̂scar)

]
=

r→∞
eik1r

r
S(n̂sca, n̂inc)

[
Einc
0ϑ

Einc
0ϕ

]
. (35)

The amplitude matrix depends on the directions of incidence and scattering as
well as on the size, morphology, composition, and orientation of the scattering
object with respect to the coordinate system. If known, the amplitude matrix
provides the complete description of the scattering pattern in the far-field
zone. The elements of the amplitude matrix have the dimension of length
and are expressed in terms of the scattering dyad as follows:

S11 = ϑ̂sca · ↔
A ·ϑ̂inc, S12 = ϑ̂sca · ↔

A ·ϕ̂inc,
S21 = ϕ̂sca · ↔

A ·ϑ̂inc, S22 = ϕ̂sca · ↔
A ·ϕ̂inc . (36)

A fundamental property of the scattering dyad is the reciprocity rela-
tion, which is a manifestation of the symmetry of the scattering process with
respect to an inversion of time (Saxon 1955a):

↔
A(−n̂inc,−n̂sca) =

↔
A

�(n̂sca, n̂inc). (37)

The reciprocity relation for the amplitude matrix follows from (35) and (36)
and the relations ϑ̂(−n̂) = ϑ̂(n̂) and ϕ̂(−n̂) = −ϕ̂(n̂):

S(−n̂inc,−n̂sca) =
[
S11(n̂sca, n̂inc) − S21(n̂sca, n̂inc)
−S12(n̂sca, n̂inc) S22(n̂sca, n̂inc)

]
. (38)

An important consequence of reciprocity is the so-called backscattering the-
orem, which directly follows from (37) (van de Hulst 1957):

S21(−n̂, n̂) = −S12(−n̂, n̂). (39)

Although the knowledge of the amplitude matrix provides the complete
description of the monochromatic scattering process in the far-field zone, the
measurement of the amplitude matrix is a very complicated experimental
problem involving the determination of both the amplitude and the phase
of the incident and scattered waves. Measuring the phase is especially dif-
ficult, and only a handful of such experiments have been performed. The
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Fig. 3. Response of a collimated detector depends on the line of sight.

majority of other experiments have dealt with quasi-monochromatic rather
than monochromatic light and involved measurements of derivative quanti-
ties having the dimension of energy flux rather than the electric field itself.
It is, therefore, useful to characterize the scattering process using quantities
that are easier to measure and are encountered more often, even though they
may provide a less complete description of the scattering pattern in some
cases.

Consider a collimated detector of electromagnetic radiation placed at a
distance r from the particle in the far-field zone, with its surface ∆S aligned
normal to and centered on r (Fig. 3). We assume that the dimension of the
detector surface is much greater than any dimension of the scattering object
but much smaller than r. It can be shown (van de Hulst 1957; Mishchenko
et al. 2002) that the total electromagnetic power received by the detector is

W∆S(r̂) ≈ 1
2

√
ε1/µ0∆Sr−2 |Esca

1 (r̂)|2 (40)

when r̂ 
= n̂inc (detector 2), whereas for the exact forward direction (detec-
tor 1)

W∆S(n̂inc)≈
√
ε1/µ0

[
1
2
∆S

∣∣Einc
0

∣∣2 −2πk−1
1 Im

[
Esca
1 (n̂inc) · Einc∗

0
]]

+O(r−2).

(41)
The term 1

2∆S
√
ε1/µ0

∣∣Einc
0

∣∣ on the right-hand side of (41) is proportional to
the detector area ∆S and is equal to the electromagnetic power that would
be received by detector 1 in the absence of the scattering particle, whereas
−√

ε1/µ0(2π/k1)Im
[
Esca
1 (n̂inc) · Einc∗

0
]
is an attenuation term independent
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of ∆S and caused by interposing the particle in the incident wave. Thus, the
well-collimated detector located in the far-field zone and having its surface
aligned normal to the exact forward direction measures the power of the in-
cident light attenuated by the interference of the incident and the scattered
fields plus a negligibly small contribution from the scattered light, whereas
the detector with surface aligned normal to any other scattering direction
“sees” only the scattered light. These are two fundamental features of elec-
tromagnetic scattering by a small particle. Equation (41) is a representation
of the so-called optical theorem.

The experiment schematically represented in Fig. 3 assumes that the de-
tectors can measure only the total electromagnetic power and make no dis-
tinction between electromagnetic waves with different states of polarization.
However, interposing a polarizer between the source of light and the scatter-
ing particle can generate incident light with a specific state of polarization,
whereas interposing a polarizer between the scattering particle and the de-
tector enables the measurement of the power corresponding to a particular
polarization component of the scattered light. By repeating the measurement
for different combinations of such polarizers, one can determine the law de-
scribing the transformation of a complete set of polarization characteristics
of the incident light into that of the scattered light provided that both sets
of characteristics have the same dimension of energy flux.

To derive the relationship between the polarization characteristics of the
incident and the scattered waves for scattering directions away from the in-
cidence direction (r̂ 
= n̂inc), we first define the respective Stokes parameters:

Iinc =
1
2

√
ε1
µ0


Einc
0ϑ E

inc∗
0ϑ + Einc

0ϕE
inc∗
0ϕ

Einc
0ϑ E

inc∗
0ϑ − Einc

0ϕE
inc∗
0ϕ

−Einc
0ϑ E

inc∗
0ϕ − Einc

0ϕE
inc∗
0ϑ

i(Einc
0ϕE

inc∗
0ϑ − Einc

0ϑ E
inc∗
0ϕ )

 , (42)

Isca =
1
r2

1
2

√
ε1
µ0


Esca
1ϑ E

sca∗
1ϑ + Esca

1ϕ E
sca∗
1ϕ

Esca
1ϑ E

sca∗
1ϑ − Esca

1ϕ E
sca∗
1ϕ

−Esca
1ϑ E

sca∗
1ϕ − Esca

1ϕ E
sca∗
1ϑ

i(Esca
1ϕ E

sca∗
1ϑ − Esca

1ϑ E
sca∗
1ϕ )

 . (43)

We then derive
Isca(rn̂sca) = r−2Z(n̂sca, n̂inc)Iinc, (44)

where the phase matrix Z describes the transformation of the Stokes vector
of the incident wave into that of the scattered wave. The explicit formulas
for the elements of the phase matrix in terms of the amplitude matrix are as
follows:
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Z11 =
1
2

(
|S11|2 + |S12|2 + |S21|2 + |S22|2

)
, (45)

Z12 =
1
2

(
|S11|2 − |S12|2 + |S21|2 − |S22|2

)
, (46)

Z13 = −Re (S11S∗
12 + S22S

∗
21) , (47)

Z14 = −Im (S11S∗
12 − S22S∗

21) , (48)

Z21 =
1
2

(
|S11|2 + |S12|2 − |S21|2 − |S22|2

)
, (49)

Z22 =
1
2

(
|S11|2 − |S12|2 − |S21|2 + |S22|2

)
, (50)

Z23 = −Re (S11S∗
12 − S22S∗

21) , (51)
Z24 = −Im (S11S∗

12 + S22S
∗
21) , (52)

Z31 = −Re (S11S∗
21 + S22S

∗
12) , (53)

Z32 = −Re (S11S∗
21 − S22S∗

12) , (54)
Z33 = Re (S11S∗

22 + S12S
∗
21) , (55)

Z34 = Im (S11S∗
22 + S21S

∗
12) , (56)

Z41 = −Im (S21S∗
11 + S22S

∗
12) , (57)

Z42 = −Im (S21S∗
11 − S22S∗

12) , (58)
Z43 = Im (S22S∗

11 − S12S∗
21) , (59)

Z44 = Re (S22S∗
11 − S12S∗

21) . (60)

Up to this point we have considered only scattering of monochromatic
plane waves. However, (44) remains valid even when the incident radiation is
a parallel quasi-monochromatic beam of light provided that the Stokes vectors
entering this equation are averages over a time interval long compared with
the period of fluctuations. This explains the usefulness of the phase matrix
concept in situations involving quasi-monochromatic light.

In general, all 16 elements of the phase matrix are nonzero. However, the
phase matrix elements for a single particle are expressed in terms of only seven
independent real numbers resulting from the four moduli |Sij | (i, j = 1, 2) and
three differences in phase between Sij . Therefore, only seven of the phase ma-
trix elements are independent, and there must be nine independent relations
among the 16 phase matrix elements. Furthermore, the specific mathematical
structure of the phase matrix can also be used to derive many useful linear
and quadratic inequalities for the phase matrix elements. Two most impor-
tant inequalities are Z11 ≥ 0 and |Zij | ≤ Z11(i, j = 1, . . . , 4). The reader
is referred to Hovenier and van der Mee (2000) for a review of this subject
and a discussion of how the general properties of the phase matrix can be
used for testing the results of theoretical computations and laboratory mea-
surements. From (38) and (45)–(60) we derive the reciprocity relation for the
phase matrix:
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Z(−n̂inc,−n̂sca) = ∆3Z
�(n̂sca, n̂inc)∆3, (61)

where ∆3 = diag[1, 1,−1, 1]. The backscattering theorem, (39), leads to the
following property of the backscattering phase matrix (Mishchenko et al.
2000b):

Z11(−n̂, n̂) − Z22(−n̂, n̂) + Z33(−n̂, n̂) − Z44(−n̂, n̂) = 0 . (62)

Electromagnetic scattering most typically produces light with polarization
characteristics different from those of the incident beam. If the incident beam
is unpolarized, i.e., Iinc = (I inc, 0, 0, 0)�, the scattered light generally has at
least one nonzero Stokes parameter other than intensity:

Isca = Z11I inc, Qsca = Z21I inc, U sca = Z31I inc, V sca = Z41I inc. (63)

This phenomenon is traditionally called “polarization” and results in scat-
tered light with finite degree of polarization: P =

√
Z221 + Z

2
31 + Z

2
41/Z11. If

the incident light is unpolarized, then the element Z11 determines the angu-
lar distribution of the scattered intensity. When the incident beam is linearly
polarized, i.e., Iinc = (I inc, Qinc, U inc, 0)�, the scattered light may become
elliptically polarized (V sca 
= 0). Conversely, when the incident light is circu-
larly polarized, i.e., Iinc = (I inc, 0, 0, V inc)�, the scattered light may become
partially linearly polarized (Qsca 
= 0 and/or U sca 
= 0).

Let us now consider the exact forward-scattering direction (r̂ = n̂inc). We
begin by defining the Stokes vector of the total field for r̂ close to n̂inc as

I =
1
2

√
ε1
µ0


EϑE

∗
ϑ + EϕE

∗
ϕ

EϑE
∗
ϑ − EϕE

∗
ϕ

−EϑE
∗
ϕ − EϕE

∗
ϑ

i(EϕE
∗
ϑ − EϑE

∗
ϕ)

 , (64)

where the total electric field is

E(rr̂) = Einc(rr̂) +Esca(rr̂) . (65)

Integrating the elements of I(rr̂) over the surface of the collimated detector
aligned normal to n̂inc, one can derive

I(rn̂inc)∆S = Iinc∆S − K(n̂inc)Iinc +O(r−2), (66)

where K(n̂inc) is the so-called extinction matrix. The elements of K(n̂inc)
have the dimension of area and are expressed in the elements of the forward-
scattering amplitude matrix S(n̂inc, n̂inc) as follows (Mishchenko et al. 2000b,
2002):
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Kjj = (2π/k1) Im [S11 + S22] j = 1, ..., 4, (67)
K12 = K21 = (2π/k1) Im [S11 − S22], (68)
K13 = K31 = −(2π/k1) Im [S12 + S21], (69)
K14 = K41 = (2π/k1)Re [S21 − S12], (70)
K23 = −K32 = (2π/k1) Im [S21 − S12], (71)
K24 = −K42 = −(2π/k1)Re [S12 + S21], (72)
K34 = −K43 = (2π/k1)Re [S22 − S11]. (73)

Equation (66) represents the most general form of the optical theorem. It
shows that the presence of the scattering particle changes not only the total
power of the electromagnetic radiation received by the detector facing the
incident wave (detector 1 in Fig. 3), but also its state of polarization. This
phenomenon is called dichroism and results from different attenuation rates
for different polarization components of the incident wave. Equation (66)
remains valid when the incident radiation is a parallel quasi-monochromatic
beam of light rather than a monochromatic plane wave. From (38) and (67)–
(73) we obtain the reciprocity relation

K(−n̂inc) = ∆3K
�(n̂inc)∆3. (74)

The knowledge of the total electromagnetic field in the far-field zone also
allows us to calculate the total scattering, absorption, and extinction cross
sections defined as follows. The product of the scattering cross section Csca
and the incident monochromatic energy flux gives the total monochromatic
power removed from the incident wave resulting solely from scattering of the
incident radiation in all directions. Analogously, the product of the absorp-
tion cross section Cabs and the incident monochromatic energy flux gives
the total monochromatic power removed from the incident wave as a result
of absorption of light by the object. Of course, the absorbed electromagnetic
energy does not disappear, but rather is converted into other forms of energy.
Finally, the extinction cross section Cext is the sum of the scattering and ab-
sorption cross sections and, when multiplied by the incident monochromatic
energy flux, gives the total monochromatic power removed from the incident
light due to the combined effect of scattering and absorption.

In view of (44) and (66), the extinction and scattering cross sections are
given by

Cext =
1
I inc

[K11(n̂inc)I inc +K12(n̂inc)Qinc (75)

+K13(n̂inc)U inc +K14(n̂inc)V inc],

Csca =
1
I inc

∫
4π

dr̂[Z11(r̂, n̂inc)I inc + Z12(r̂, n̂inc)Qinc (76)

+Z13(r̂, n̂inc)U inc + Z14(r̂, n̂inc)V inc].
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The absorption cross section is equal to the difference of the extinction and
scattering cross sections:

Cabs = Cext − Csca ≥ 0. (77)

The single-scattering albedo is defined as the ratio of the scattering and
extinction cross sections:

' = Csca/Cext ≤ 1 . (78)

This quantity is widely used in the radiative transfer theory (see, e.g., the
chapter by Stamnes) and is interpreted as the probability that a photon
interacting with the particle will be scattered rather than absorbed. Obvi-
ously, ' = 1 for nonabsorbing particles. Equations (75)–(78) also hold for
quasi-monochromatic incident light provided that the elements of the Stokes
vector are averages over a time interval long compared with the period of
fluctuations. All cross sections are inherently positive quantities and have
the dimension of area. They depend on the direction, polarization state, and
wavelength of the incident light as well as on the particle size, morphology,
refractive index, and orientation with respect to the reference frame.

If the particle absolute temperature T is above zero, it can emit as well as
scatter and absorb electromagnetic radiation. The emitted radiation in the
far-field zone of the particle propagates in the radial direction, i.e., along the
unit vector n̂ = r/r, where r is the position vector of the observation point
with origin inside the particle. The energetic and polarization characteristics
of the emitted radiation are described by a 4-component emission column
vector Ke(n̂, T, ω) defined such that the net rate at which the emitted energy
crosses a surface element ∆S normal to n̂ at a distance r from the particle
at frequencies from ω to ω +∆ω is

W e =
1
r2
Kel(n̂, T, ω)∆S∆ω. (79)

The emission vector can be expressed in terms of the extinction and phase
matrices as follows (Mishchenko et al. 2000b, 2002):

Kei(n̂, T, ω) = Ib(T, ω)Ki1(n̂, ω) − Ib(T, ω)
∫
4π

dn̂′Zi1(n̂, n̂′, ω), i = 1, ..., 4,

(80)
where Ib(T, ω) = �ω3/{4π3c2[ exp(�ω/kBT ) − 1]} is the Planck energy dis-
tribution function, � = h/2π, h is Planck’s constant, c is the speed of light
in a vacuum, and kB is Boltzmann’s constant.

4 Scattering, Absorption, and Emission
by a Collection of Independently Scattering Particles

The formalism developed in the previous section strictly applies only to scat-
tering of monochromatic or quasi-monochromatic light by an isolated particle
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in the form of a single body or a finite aggregate (Fig. 2). However, it can
also be applied to single scattering by collections of independently scattering
particles under certain simplifying assumptions.

Consider first a small volume element having a linear dimension l and
comprising a number N of randomly positioned particles and illuminated by
a plane electromagnetic wave. Although the volume element is assumed to
be macroscopically small, its linear dimension must still be much larger than
the size of the particles and the wavelength of the incident light. We assume
that N is small enough so that the mean distance between the particles is
also much larger than the incident wavelength and the average particle size.
This means that each particle is located in the far-field zone of all other
particles and scatters the incident light in exactly the same way as if all
other particles did not exist. We also assume that N is sufficiently small so
that the main contribution to the total scattered radiation exiting the volume
element comes from light scattered only once. In other words, the contribution
of light scattered two and more times by particles inside the volume element
is assumed to be negligibly small. This is equivalent to requiring that the
“optical size” N〈Csca〉l−2 of the volume element be much smaller than one,
where 〈Csca〉 is the average scattering cross section per particle. Finally, we
assume that the positions of the particles are sufficiently random so that
there are no systematic phase relations between individual waves scattered by
different particles. It can then be shown that the total optical characteristics
of the volume element are given by

Csca =
N∑

n=1

(Csca)n = N〈Csca〉, (81)

Cext =
∑

(Cext)n = N〈Cext〉, (82)

Cabs =
∑

(Cabs)n = N〈Cabs〉, (83)

Z =
∑

Zn = N〈Z〉, (84)

K =
∑

Kn = N〈K〉, (85)

Ke =
∑

(Ke)n = N〈Ke〉, (86)

where n numbers the particles and 〈Csca〉, 〈Cext〉 , 〈Cabs〉, 〈Z〉, 〈K〉, and 〈Ke〉
are the average scattering, extinction, and absorption cross sections, the phase
and extinction matrices, and the emission vector per particle, respectively.
Thus, the optical cross sections and the phase and extinction matrices of
the small volume element comprising randomly positioned, widely separated
particles are obtained by adding the respective optical characteristics of the
individual particles. Obviously, this property of additivity also holds when
the incident light is a parallel quasi-monochromatic beam rather than a plane
electromagnetic wave.
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It is not always easy to determine what minimal interparticle separation
allows the use of the concept of the single-particle amplitude matrix and
makes particles independent scatterers. Exact calculations for randomly ori-
ented two-sphere clusters composed of wavelength-sized spheres suggest that
particles can scatter independently when the distance between their centers
is as small as four times their radius (Mishchenko et al. 1995). Even though
this result is not necessarily a universal rule and may be expected to become
inapplicable for subwavelength-sized particles, it can be considered a simple
approximate condition of independent scattering by particles comparable to
and larger than a wavelength.

Scattering media encountered in practice are usually mixtures of parti-
cles with different sizes, shapes, orientations, and refractive indices. Equations
(81)–(86) imply that theoretical computations of single light scattering, ab-
sorption, and emission by a small volume element consisting of such particles
must include averaging the optical cross sections, the phase and extinction
matrices, and the emission vector over a representative particle ensemble. The
computation of ensemble averages is, in principle, rather straightforward and
involves numerical integration over a distribution of particle sizes, shapes,
refractive indices, and/or orientations (Mishchenko et al. 2000b).

The quantities introduced above can also be used to describe multiple
scattering by a large collection of independent particles. The general radiative
transfer equation for an emitting medium comprising sparsely and randomly
distributed, arbitrarily oriented nonspherical particles is as follows (Tsang
et al. 1985; Mishchenko 2002):

dI(n̂, ω)/ds = −n0〈K(n̂, ω)〉I(n̂, ω) + n0〈Ke(n̂, T, ω)〉 (87)

+n0
∫
4π

dn̂′〈Z(n̂, n̂′, ω)〉I(n̂′, ω),

where the four-component column vector I is the specific intensity vector of
multiply scattered light propagating in the direction n̂, the pathlength ele-
ment ds is measured along n̂, and n0 is the particle number density. The first
term on the right-hand side of (87) describes the change of the specific inten-
sity vector due to extinction, the second term describes the contribution of
the emitted light, and the third term is the contribution of light illuminating
a small volume element from all directions n̂′ and scattered in the direction
n̂. It is important to recognize that although we use the same symbol I to
denote the Stokes vector of a transverse electromagnetic wave in (23) and the
specific intensity vector in (87), their dimensions are different: the elements of
the Stokes vector have the dimension of monochromatic energy flux, whereas
those of the specific intensity vector have the dimension of monochromatic ra-
diance (energy per unit area per unit time per unit wavelength per unit solid
angle). The radiative transfer equation must be supplemented by boundary
conditions appropriate for a particular physical problem. For example, the
standard model of a planetary atmosphere is a plane-parallel system illumi-
nated from above by solar radiation (see the chapter by Stamnes).
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5 Isotropic and Symmetric Scattering Media

By definition, the phase matrix relates the Stokes parameters of the incident
and scattered beams defined relative to their respective meridional planes.
Unlike the phase matrix, the scattering matrix F relates the Stokes parame-
ters of the incident and scattered beams defined with respect to the scattering
plane, that is, the plane through n̂inc and n̂sca (van de Hulst 1957). A simple
way to introduce the scattering matrix is to direct the z axis of the refer-
ence frame along the incident beam and superpose the meridional plane with
ϕsca = ϕinc = 0 with the scattering plane (Fig. 1). Then the scattering matrix
F can be defined as

F(ϑsca) = Z(ϑsca, ϕsca = 0; ϑinc = 0, ϕinc = 0). (88)

In general, all 16 elements of the scattering matrix are nonzero and depend
on the particle orientation with respect to the incident and scattered beams.

The choice of the laboratory reference frame having the xz plane coincid-
ing with the scattering plane can often be inconvenient because any change
in the orientation of the scattering plane then also changes the orientation of
the scattering particle with respect to the coordinate system. However, the
concept of scattering matrix can be very useful in application to so-called
macroscopically isotropic and mirror symmetric scattering media, because
in this case the scattering matrix of a particle collection becomes indepen-
dent of the incidence direction and the orientation of the scattering plane,
is functionally dependent only on the angle Θ = cos−1(n̂inc · n̂sca) between
the incident and scattered beams, and has a simple block-diagonal structure
(van de Hulst 1957):

F(Θ) =


F11(Θ) F12(Θ) 0 0

F12(Θ) F22(Θ) 0 0

0 0 F33(Θ) F34(Θ)

0 0 −F34(Θ) F44(Θ)

 = N〈F(Θ)〉, (89)

where N is the number of particles in the volume element and 〈F(Θ)〉 is the
ensemble-averaged scattering matrix per particle. By definition, the scatter-
ing medium is macroscopically isotropic and mirror symmetric if it is com-
posed of randomly oriented particles with a plane of symmetry and/or equal
numbers of randomly oriented particles and their mirror-symmetric counter-
parts.

The knowledge of the matrix F(Θ) can be used to calculate the Stokes
phase matrix for an isotropic and symmetric scattering medium. Assume that
0 < ϕsca − ϕinc < π and consider the phase matrix Z(ϑsca, ϕsca;ϑinc, ϕinc)
(Fig. 4). The phase matrix links the Stokes vectors of the incident and scat-
tered beams specified relative to their respective meridional planes. There-
fore, to compute the Stokes vector of the scattered beam with respect to its
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Fig. 4. On the relationship between scattering and phase matrices.

meridional plane, we must (i) calculate the Stokes vector of the incident beam
with respect to the scattering plane; (ii) multiply it by the scattering matrix,
thereby obtaining the Stokes vector of the scattered beam with respect to the
scattering plane; and finally (iii) compute the Stokes vector of the scattered
beam with respect to its meridional plane. This procedure yields

Z(ϑsca, ϕsca;ϑinc, ϕinc) = L(−σ2)F(Θ)L(π − σ1), (90)

where

L(η) =


1 0 0 0

0 cos 2η − sin 2η 0

0 sin 2η cos 2η 0

0 0 0 1

 (91)

is the rotation matrix which describes the transformation of the Stokes pa-
rameters when the reference plane is rotated about the direction of propaga-
tion through an angle 0 ≤ η < 2π in the clockwise direction when looking in
the direction of propagation. The scattering angle Θ and the rotation angles
σ1 and σ2 can be calculated from ϑsca, ϑinc, ϕsca, and ϕinc using spherical
trigonometry:

cosΘ = cosϑsca cosϑinc + sinϑsca sinϑinc cos(ϕsca − ϕinc) , (92)

cosσ1 =
cosϑsca − cosϑinc cosΘ

sinϑinc sinΘ
, (93)

cosσ2 =
cosϑinc − cosϑsca cosΘ

sinϑsca sinΘ
. (94)
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Equations (90) and (92)–(94) demonstrate that the phase matrix of a macro-
scopically isotropic and symmetric medium depends only on the difference
of the azimuthal angles of the scattered and incident beams rather than on
their specific values. This matrix satisfies the symmetry relations (Hovenier
and van der Mee 1983)

Z(ϑsca, ϕinc;ϑinc, ϕsca) = ∆34Z(ϑsca, ϕsca;ϑinc, ϕinc)∆34, (95)
Z(π − ϑsca, ϕsca;π − ϑinc, ϕinc) = ∆34Z(ϑsca, ϕsca;ϑinc, ϕinc)∆34, (96)

where ∆34 = diag[1, 1,−1,−1]. Although (90) is valid for 0 < ϕsca−ϕinc < π,
combining it with (95) yields the phase matrix for all possible incidence and
scattering directions.

The extinction matrix for an isotropic and symmetric scattering medium
is direction-independent and diagonal:

K(n̂) ≡ K = Cext∆ = N〈Cext〉∆, (97)

where ∆ is the 4× 4 unit matrix, N is the number of particles in the volume
element, and 〈Cext〉 is the average extinction cross section per particle. The
latter is now independent of the polarization state of the incident light. The
average scattering cross section per particle is also independent of the direc-
tion of propagation and polarization state of the incident light and is given
by

〈Csca〉 = 2π
∫ π

0
dϑ〈F11(ϑ)〉. (98)

The average absorption cross section per particle,

〈Cabs〉 = 〈Cext〉 − 〈Csca〉, (99)

and the average single-scattering albedo,

' = 〈Csca〉/〈Cext〉, (100)

are also independent of the direction and polarization of the incident beam.
The same is true of the extinction, scattering, and absorption efficiency fac-
tors defined as

Qext = 〈Cext〉/〈G〉, Qsca = 〈Csca〉/〈G〉, Qabs = 〈Cabs〉/〈G〉, (101)

respectively, where 〈G〉 is the average projection area per particle. The
ensemble-averaged emission vector per particle is given by

〈Ke(n̂, T, ω)〉 ≡ 〈Ke(T, ω)〉 = 〈Cabs〉[Ib(T, ω), 0, 0, 0]�, (102)

where 〈Cabs〉 may depend on frequency. Thus, radiation emitted by a small
volume element comprising equal numbers of randomly oriented particles and
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their mirror-symmetric counterparts and/or randomly oriented particles with
a plane of symmetry is isotropic and unpolarized.

The scattering matrix simplifies when Θ = 0 or Θ = π (van de Hulst
1957; Mishchenko and Hovenier 1995):

F(0) = diag{F11(0), F22(0), F22(0), F44(0)}, (103)

F(π) = diag{F11(π), F22(π),−F22(π), F11(π) − 2F22(π)}. (104)

The structure of the scattering matrix becomes especially simple for spheri-
cally symmetric particles:

F(Θ) =


F11(Θ) F12(Θ) 0 0

F12(Θ) F11(Θ) 0 0

0 0 F33(Θ) F34(Θ)

0 0 −F34(Θ) F33(Θ)

 . (105)

The scattering matrix of this type will be referred to as the Lorenz–Mie
scattering matrix. In this case (103) and (104) imply that F33(0) = F11(0)
and F33(π) = −F11(π).

It is convenient and customary in many types of applications to use the
so-called normalized scattering matrix

F̃(Θ) =
4π

〈Csca〉 〈F(Θ)〉 =


a1(Θ) b1(Θ) 0 0

b1(Θ) a2(Θ) 0 0

0 0 a3(Θ) b2(Θ)

0 0 −b2(Θ) a4(Θ)

 (106)

with dimensionless elements. Similarly, the normalized phase matrix can be
defined as

Z̃(ϑsca, ϕsca;ϑinc, ϕinc) =
4π

〈Csca〉 〈Z(ϑsca, ϕsca;ϑinc, ϕinc)〉. (107)

The (1,1) element of the normalized scattering matrix, a1(Θ), is traditionally
called the phase function and, as follows from (98) and (106), satisfies the
normalization condition

1
2

∫ π

0
dΘ sinΘa1(Θ) = 1. (108)

The asymmetry parameter is defined as

〈cosΘ〉 = 1
2

∫ π

0
dΘ sinΘa1(Θ) cosΘ. (109)

The asymmetry parameter is positive if the particle scatters more light to-
ward the forward direction, is negative if more light is scattered toward the



98 Michael I. Mishchenko and Larry D. Travis

backscattering direction, and vanishes if the scattering is symmetric with
respect to the plane perpendicular to the incidence direction.

An important difference between the regular and normalized matrices
is that the latter do not possess the property of additivity. Consider, for
example, a small volume element containing N1 particles of type 1 and N2
particles of type 2. The total scattering matrix of the volume element is
obtained by adding the scattering matrices of all particles,

F = N1〈F1〉 +N2〈F2〉 , (110)

whereas the respective normalized matrix is given by

F̃ =
N1〈Csca1〉F̃1 +N2〈Csca2〉F̃2
N1〈Csca1〉 +N2〈Csca2〉 . (111)

The traditional way of specifying the elements of the normalized scatter-
ing matrix is to tabulate their numerical values at a representative grid of
scattering angles. A more mathematically appealing and efficient approach
is to expand the scattering matrix elements in so-called generalized spherical
functions P s

mn(cosΘ) or Wigner functions ds
mn(Θ) = in−mP s

mn(cosΘ) (de
Haan et al. 1987):

a1(Θ) =
smax∑
s=0

αs
1P

s
00(cosΘ) =

smax∑
s=0

αs
1d

s
00(Θ), (112)

a2(Θ) + a3(Θ) =
smax∑
s=2

(αs
2 + α

s
3)P

s
22(cosΘ) =

smax∑
s=2

(αs
2 + α

s
3)d

s
22(Θ), (113)

a2(Θ)−a3(Θ) =
smax∑
s=2

(αs
2−αs

3)P
s
2,−2(cosΘ)=

smax∑
s=2

(αs
2−αs

3)d
s
2,−2(Θ),(114)

a4(Θ) =
smax∑
s=0

αs
4P

s
00(cosΘ) =

smax∑
s=0

αs
4d

s
00(Θ), (115)

b1(Θ) =
smax∑
s=2

βs
1P

s
02(cosΘ) = −

smax∑
s=2

βs
1d

s
02(Θ), (116)

b2(Θ) =
smax∑
s=2

βs
2P

s
02(cosΘ) = −

smax∑
s=2

βs
2d

s
02(Θ). (117)

The number of nonzero terms in these expansions is in principle infinite. In
practice the expansions are truncated at s = smax with smax chosen such
that the corresponding finite sums differ from the respective scattering ma-
trix elements on the entire interval Θ ∈ [0, π] within the desired numerical
accuracy.

The properties of the generalized spherical functions and the Wigner d
functions are well known (e.g., Hovenier and van der Mee 1983; Mishchenko et
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al. 2002). For given m and n, either type of functions with s ≥ max(|m|, |n|)
forms a complete orthonormal set of functions of cosΘ ∈ [−1,+1]. Using the
corresponding orthogonality relation, we obtain from (112)–(117)

αs
1 =

(
s+

1
2

) ∫ π

0
dΘ sinΘa1(Θ)ds

00(Θ), (118)

αs
2 + α

s
3 =

(
s+

1
2

) ∫ π

0
dΘ sinΘ[a2(Θ) + a3(Θ)]ds

22(Θ), (119)

αs
2 − αs

3 =
(
s+

1
2

) ∫ π

0
dΘ sinΘ[a2(Θ) − a3(Θ)]ds

2,−2(Θ), (120)

αs
4 =

(
s+

1
2

) ∫ π

0
dΘ sinΘa4(Θ)ds

00(Θ), (121)

βs
1 = −

(
s+

1
2

) ∫ π

0
dΘ sinΘb1(Θ)ds

02(Θ), (122)

βs
2 = −

(
s+

1
2

) ∫ π

0
dΘ sinΘb2(Θ)ds

02(Θ). (123)

These formulas suggest a simple, although not always the most elegant and
efficient way to compute the expansion coefficients by evaluating the inte-
grals numerically using a suitable quadrature formula (de Rooij and van der
Stap 1984). This procedure assumes the knowledge of the scattering matrix
elements at the quadrature division points.

Since the Wigner d functions possess convenient mathematical properties
and can be efficiently computed by using a simple and numerically stable re-
currence relation, expansions (112)–(117) offer several practical advantages.
For example, if the expansion coefficients appearing in these expansions are
known, then the elements of the normalized scattering matrix can be easily
calculated for practically any number of scattering angles with a minimal
expense of computer time. Hence instead of tabulating the elements of the
scattering matrix for a large number of scattering angles and using interpo-
lation in order to find the scattering matrix at intermediate points, one can
provide a complete and accurate specification of the scattering matrix by
tabulating a limited number of numerically significant expansion coefficients.
Another advantage of expansions (112)–(117) is that the d functions obey
an addition theorem and thereby provide an elegant analytical way of cal-
culating the coefficients in a Fourier decomposition of the normalized phase
matrix in azimuth used to efficiently handle the azimuthal dependence of the
solution of the vector radiative transfer equation (de Haan et al. 1987). One
more advantage is that using the T -matrix method, the expansion coefficients
can be calculated analytically without computing the scattering matrix itself
(Mishchenko 1991).

The expansion coefficients obey the general inequalities |αs
j | ≤ 2s+1 (j =

1, 2, 3, 4) and |βs
j | < 0.7(2s+ 1) (j = 1, 2) (van der Mee and Hovenier 1990).
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Since ds
00(Θ) is also a Legendre polynomial Ps(cosΘ), (112) is the well-known

expansion of the phase function in Legendre polynomials (Chandrasekhar
1960). The identity P0(cosΘ) ≡ 1 and (108) and (112) yield α01 ≡ 1, while
the orthogonality property of the Wigner d functions and (109) result in the
relation 〈cosΘ〉 = α11/3.

6 Scale Invariance Rule

A fundamental property of electromagnetic scattering is the scale invariance
rule, which states the following: If we multiply all particle dimensions by a
constant factor f (thereby not changing the particle shape) and multiply the
wave numbers k1 and k2 in the exterior and interior regions, respectively, by
a factor 1/f , then all dimensionless scattering and absorption characteristics
of the particle do not change. This rule can be reformulated as follows: If the
particle geometry is characterized by the shape and a typical dimension a
(for example, the largest or the smallest particle dimension or the radius of
the surface- or volume-equivalent sphere), then the dimensionless scattering
characteristics do not depend on specific values of a, k1, and k2, but rather
depend on the product of a and k1, traditionally called the size parameter
x, and the ratio of k2 to k1 which is simply the relative refractive index
m = k2/k1 = m2/m1. [The size parameter can also be expressed in terms
of the wavelength of the incident wave in the exterior region λ = 2π/k1 as
x = 2πa/λ1]. The scale invariance rule is obeyed by the products of k21 and
the elements of the phase and scattering matrices; the products of k21 and the
optical cross sections; the products of k21 and the extinction matrix elements;
the efficiency factors; the elements of the normalized scattering matrix; the
coefficients in (112)–(117); the single-scattering albedo; and the asymmetry
parameter. The scale invariance rule can be very helpful in practice because
it makes a single computation or measurement applicable to all couples (size,
wavelength) with the same ratio size/wavelength, provided that the relative
refractive index does not change. This rule underlies the basic idea of the
microwave analog technique for laboratory measurements of electromagnetic
scattering by small particles (Section 9).

7 Exact Theoretical Techniques

The scattering characteristics introduced in previous sections are intimately
related to physical and geometrical parameters of particles such as size, shape,
refractive index, and orientation. Therefore, understanding various optical
phenomena and developing particle characterization techniques require accu-
rate quantitative knowledge of the electromagnetic scattering interaction as
a function of the particle parameters. Although all needs of a practitioner
interested in light scattering by spherical particles may be well served by
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the Lorenz-Mie theory, scattering properties of nonspherical particles must
be either computed using a sophisticated theory or measured experimentally.
Both approaches have their strengths, weaknesses, and limitations, and only
a combination of various theoretical and experimental approaches can lead
to significant advances in characterizing electromagnetic scattering by non-
spherical particles.

Most of the exact theoretical techniques belong to one of two broad cate-
gories. Differential equation methods compute the scattered field by solving
the Maxwell or the vector wave equations in the frequency or in the time do-
main, whereas integral equation methods are based on the volume or surface
integral counterparts of the Maxwell equations. This section briefly reviews
several widely used exact theoretical approaches. More detailed information
can be found in the recent book edited by Mishchenko et al. (2000a).

The separation of variables method (SVM) for spheroids was developed
by Oguchi (1973) and Asano and Yamamoto (1975). SVM solves the scatter-
ing problem in the spheroidal coordinate system by means of expanding the
incident, internal, and scattered fields in vector spheroidal wave functions.
The expansion coefficients of the incident field are computed analytically,
whereas the unknown expansion coefficients of the internal and scattered
fields are determined by applying the boundary conditions (10). Because the
vector spheroidal wave functions are not orthogonal on the spheroid sur-
face, this procedure yields an infinite set of linear algebraic equations for the
unknown coefficients which must be truncated and solved numerically. SVM
was significantly improved by Voshchinnikov and Farafonov (1993) and Kurtz
and Salib (1993). Numerical factors have limited the applicability of SVM to
semi-major-axis size parameters less than about 40. The obvious limitation
of the technique is that it applies only to spheroidal scatterers, whereas the
main advantage is that it produces very accurate results and is applicable
to spheroids with extreme aspect ratios. SVM was extended to core-mantle
spheroids by Onaka (1980), Cooray and Ciric (1992), and Farafonov et al.
(1996). Further references can be found in the review by Ciric and Cooray
(2000) and the book by Li et al. (2002).

The finite element method (FEM) is a differential equation technique that
computes the scattered field by solving numerically the vector Helmholtz
equation subject to the standard boundary conditions (Silvester and Ferrari
1996). The particle is imbedded in a finite computational domain discretized
into many cells with about 10 to 20 cells per wavelength. The electric field
values are specified at the nodes of the cells and are initially unknown. Using
the boundary conditions, the differential equation is converted into a matrix
equation for the unknown node field values. The latter is solved using the
standard Gaussian elimination or preconditioned iterative techniques such as
the conjugate gradient method. Although scattering in the far-field zone is an
open-space problem, FEM is always implemented in a finite computational
domain in order to limit the number of unknowns. Therefore, approximate
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absorbing boundary conditions must be imposed at the outer boundary of
the computational domain in order to suppress wave reflections back into the
domain and permit the numerical analogs of the outward-propagating wave
to exit the domain almost as if it were infinite. Another way of enforcing the
radiation condition is the so-called unimoment method (Morgan 1980). FEM
can be applied to arbitrarily shaped and inhomogeneous particles and is sim-
ple in concept and implementation. However, FEM computations are spread
over the entire computational domain rather than confined to the scatterer
itself, thereby making the technique slow and limited to size parameters less
than about 10. The finite spatial discretization and the approximate absorb-
ing boundary condition limit the accuracy of the method. Further information
about FEM can be found in Silvester and Ferrari (1996), Volakis et al. (1998),
and Jin (2002).

Unlike FEM, the finite difference time domain method (FDTDM) cal-
culates electromagnetic scattering in the time domain by directly solving
Maxwell’s time-dependent curl equations (2) and (4) (Yee 1966). The space
and time derivatives of the electric and magnetic fields are approximated
using a finite difference scheme with space and time discretizations selected
so that they constrain computational errors and ensure numerical stability
of the algorithm. Since the scattering object is imbedded in a finite com-
putational domain, absorbing boundary conditions are employed to model
scattering in the open space (Berenger 1996). Modeling scattering objects
with curved boundaries using rectangular grid cells causes a staircasing ef-
fect and increases numerical errors, especially for particles with large relative
refractive indices. This effect is reduced using special techniques (Yang and
Liou 2000; Sun and Fu 2000). Since FDTDM computes the near field in the
time domain, a special near zone to far zone transformation must be invoked
in order to compute the scattered far field in the frequency domain (Yang
and Liou 1996; Taflove and Hagness 2000). FDTDM shares the advantages
of FEM as well as its limitations in terms of accuracy and size parameter
range. Additional information on FDTDM and its applications can be found
in the book by Kunz and Luebbers (1993) and in the review by Yang and
Liou (2000).

The point matching method (PMM) is a differential equation technique
based on expanding the incident and internal fields in vector spherical wave
functions (VSWFs) regular at the origin and expanding the scattered field
outside the scatterer in outgoing VSWFs. The expansion coefficients of the
incident field are computed analytically, whereas the coefficients of the in-
ternal and scattered fields are found by truncating the expansions to a finite
size and matching the fields at the surface of the scatterer via the applica-
tion of the boundary conditions. In the simple PMM, the fields are matched
at as many points on the surface as there exist unknown expansion coef-
ficients (Oguchi 1973). The simple PMM often produces poorly converging
and unstable results, which may be attributed to the fact that it relies on
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the Rayleigh hypothesis. The convergence problem of the simple PMM ap-
pears to be partly ameliorated in the generalized PMM (GPMM) by creat-
ing an overdetermined system of equations for the unknown coefficients by
means of matching the fields in the least squares sense at a number of sur-
face points significantly greater than the number of unknowns (Morrison and
Cross 1974). The performance of GPMM is further improved by employing
multiple spherical expansions to describe the fields both inside and outside
the scattering object (Joo and Iskander 1990; Al-Rizzo and Tranquilla 1995).
This multiple-expansion GPMM (ME-GPMM) does not rely on the Rayleigh
hypothesis and is otherwise known as the generalized multipole technique,
discrete sources method, and Yasuura method (Wriedt 1999; Doicu et al.
2000).

The interaction of a plane electromagnetic wave with an object of volume
VINT is fully described by the volume integral equation (28). The calculation
of the scattered field using (28) would be straightforward except that the
internal electric field is unknown. Therefore, this equation must first be solved
for the internal field. The integral in (28) is approximated by discretizing the
interior region into N cubic cells of a volume ∆V with about 10 to 20 cells
per wavelength and assuming that the electric field and the refractive index
within each cell are constant:

E(ri) = Einc(ri)+k21∆V
N∑

j=1

↔
G(ri, rj)·E(rj)[m2(rj)−1], i = 1, ..., N, (124)

where ri ∈ VINT is the central point of the ith cell. Equations (124) form a
system ofN linear algebraic equations for theN unknown internal fieldsE(ri)
and are solved numerically. Once the internal fields are found, the external
field is determined from

E(r) = Einc(r) + k21∆V
N∑

j=1

↔
G(r, rj) · E(rj)[m2(rj) − 1], r ∈ VEXT. (125)

Finally, the scattered field is computed by subtracting the incident field
from the external field. This version of the volume integral equation method
(VIEM) is known as the method of moments (MOM). Since the free space
dyadic Green’s function becomes singular as |r − r′| → 0, special techniques
must be used to handle the self-interaction term (j = i) in the sum on
the right-hand side of (124) (Lakhtakia and Mulholland 1993). The straight-
forward approach to solving the MOM matrix equation using the standard
Gaussian elimination is not practical for size parameters exceeding unity. The
conjugate gradient method together with the fast Fourier transform (Peterson
et al. 1998) can be applied to significantly larger size parameters and signif-
icantly reduces computer memory requirements. The standard drawback of
using a preconditioned iterative technique is that computations must be fully
repeated for each new illumination direction.
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Another version of VIEM is the so-called discrete dipole approximation
(DDA). Whereas MOM deals with the actual electric fields in the central
points of the cells, DDA exploits the concept of exciting fields. DDA is based
on partitioning the particle into a number N of elementary polarizable units
called dipoles. The electromagnetic response of the dipoles to the local electric
field is assumed to be known. The field exciting a dipole is a superposition
of the external field and the fields scattered by all other dipoles. This allows
one to write a system of N linear equations for N fields exciting the N
dipoles. The numerical solution of the DDA matrix equation is then used
to compute the N partial fields scattered by the dipoles and thus the total
scattered field. Although the original derivation of the DDA by Purcell and
Pennypacker (1973) was heuristic, Lakhtakia and Mulholland (1993) showed
that DDA can be derived from (28) and is closely related to MOM.

The major advantages of MOM and DDA are that they automatically sat-
isfy the radiation condition at infinity (31), are confined to the scatterer itself,
thereby resulting in fewer unknowns than the differential equation methods,
and can be applied to inhomogeneous, anisotropic, and optically active scat-
terers. However, the numerical accuracy of the methods is relatively low and
improves only slowly with increasing N , whereas the computer time grows
rapidly with increasing size parameter (Draine and Flatau 1994; Evans and
Stephens 1995; Okamoto et al. 1995). Another disadvantage of the techniques
is the need to repeat the entire calculation for each new direction of incidence.
Further information on MOM and DDA and their applications can be found
in Miller et al. (1991) and Draine (2000).

Equation (28) is a Fredholm-type integral equation with a singular kernel
at r′ = r. Holt et al. (1978) removed the singularity by applying the Fourier
transform to the internal field and converting the volume integral into an
integral in the wave number coordinate space. Discretization of the latter
integral results in a matrix equation which is solved numerically and gives
the scattered field. A limitation of this Fredholm integral equation method
(FIEM) is that the matrix elements must be evaluated analytically, thereby
requiring different programs for each shape and restricting computations to
only a few models such as spheroids, triaxial ellipsoids, and finite circular
cylinders. The majority of reported FIEM computations pertain to size pa-
rameters smaller than 5 and tend to be rather time consuming (Holt 1982).

The Lorenz-Mie theory can be extended to clusters of spheres by using
the translation addition theorem for vector spherical wave functions (Bruning
and Lo 1971; Borghese et al. 1979; Fuller 1991). The total field scattered by
a multi-sphere cluster can be expressed as a superposition of individual fields
scattered from each sphere. The external electric field illuminating the cluster
and the individual fields scattered by the component spheres are expanded
in VSWFs with origins at the individual sphere centers. The orthogonality
of the VSWFs in the sphere boundary conditions is exploited by applying
the translation addition theorem in which a VSWF centered at one sphere
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origin is re-expanded about another sphere origin. This procedure ultimately
results in a matrix equation for the scattered-field expansion coefficients of
each sphere. Numerical solution of this equation for the specific incident wave
gives the individual scattered fields and thereby the total scattered field. Al-
ternatively, inversion of the cluster matrix equation gives sphere-centered
transition matrices that transform the expansion coefficients of the incident
wave into the expansion coefficients of the individual scattered fields. In the
far-field region, the individual scattered-field expansions can be transformed
into a single expansion centered at a single origin inside the cluster. This
procedure gives the T matrix that transforms the incident-wave expansion
coefficients into the single-origin expansion coefficients of the total scattered
field (Mackowski 1994) and can be used in the analytical averaging of scat-
tering characteristics over cluster orientations (Fucile et al. 1993; Mackowski
and Mishchenko 1996). The superposition method (SM) has been extended to
spheres with one or more eccentrically positioned spherical inclusions (Borgh-
ese et al. 1994; Fuller 1995; Videen et al. 1995) and to clusters of dielectric
spheroids in an arbitrary configuration (Ciric and Cooray 2000). Because of
the analyticity of its mathematical formulation, SM is capable of producing
very accurate results. Fuller and Mackowski (2000) gave a detailed review of
SM for compounded spheres.

The T -matrix method (TMM) is based on expanding the incident field
in VSWFs regular at the origin and expanding the scattered field outside a
circumscribing sphere of the scatterer in VSWFs regular at infinity. The T
matrix transforms the expansion coefficients of the incident field into those
of the scattered field and, if known, can be used to compute any scattering
characteristic of the particle. TMM was initially developed by Waterman
(1971) for single homogeneous objects and was generalized to multilayered
scatterers and arbitrary clusters of nonspherical particles by Peterson and
Ström (1973, 1974). For spheres, all TMM formulas reduce to those of the
Lorenz-Mie theory. In the case of clusters composed of spherical components,
the T -matrix method reduces to the multi-sphere SM (Mackowski 1994).

The T matrix for single homogeneous and multilayered scatterers is usu-
ally computed using the extended boundary condition method (EBCM; Wa-
terman 1971), which explicitly avoids the use of the Rayleigh hypothesis.
EBCM can be applied to any particle shape, although computations become
much simpler and more efficient for bodies of revolution. Special procedures
were developed to improve the numerical stability of EBCM computations for
large size parameters and/or extreme aspect ratios (Mishchenko and Travis
1998). Recent work has demonstrated the practical applicability of EBCM
to particles without axial symmetry, e.g., ellipsoids, cubes, and finite poly-
hedral cylinders (e.g., Laitinen and Lumme 1998; Doicu et al. 2000; Kahnert
et al. 2001; Havemann and Baran 2001). The computation of the T matrix
for a cluster assumes that the T matrices of all components are known and
is based on the use of the translation addition theorem for VSWFs (Pe-



106 Michael I. Mishchenko and Larry D. Travis

terson and Ström 1973). The loss of efficiency for particles with large as-
pect ratios or with shapes lacking axial symmetry is the main drawback of
TMM. The main advantages of TMM are high accuracy, speed, and appli-
cability to particles with equivalent-sphere size parameters exceeding 180
(Mishchenko and Macke 1999). Mishchenko (1991), Khlebtsov (1992), and
Mackowski and Mishchenko (1996) developed analytical orientation averag-
ing procedures which make TMM computations for randomly oriented parti-
cles as fast as those for a particle in a fixed orientation. Further information
can be found in Mishchenko et al. (2002).

The only methods yielding very accurate results for particles compara-
ble to and larger than a wavelength are SVM, TMM, and SM. SVM, TMM,
SM, and ME-GPMM have been used in computations for particles signifi-
cantly larger than a wavelength. The first three techniques appear to be the
most efficient in application to bodies of revolution. The analytical orienta-
tion averaging procedure makes TMM the most efficient technique for ran-
domly oriented particles with moderate aspect ratios. Particles with larger
aspect ratios can be treated with SVM, an iterative EBCM, and ME-GPMM.
Computations for anisotropic objects and homogeneous and inhomogeneous
particles lacking rotational symmetry often have to rely on more flexible tech-
niques such as FEM, FDTDM, MOM, and DDA. These techniques are simple
in concept and computer implementation and have comparable performance
characteristics, although their simplicity and flexibility are often accompa-
nied by lower efficiency and accuracy and by stronger practical limitations
on the maximal size parameter. A number of software implementations of the
techniques described in this section are currently available on-line and many
of them are in the public domain (Flatau 2000; Wriedt 2000).

8 Approximations

Any approximate theory of light scattering is based on a simplifying assump-
tion that substantially limit its range of applicability. For example, Rayleigh
(1897) derived an approximation for scattering in the small-particle limit
(x � 1) by assuming that the incident field inside and near the particle be-
haves almost as an electrostatic field and the internal field is homogeneous.
The conditions of validity of the Rayleigh-Gans approximation (RGA) (oth-
erwise known as the Rayleigh-Debye or Born approximation) are x|m−1| � 1
and |m − 1| � 1. Hence particles are assumed to be not too large (although
they may be larger than in the case of Rayleigh scattering) and optically
“soft.” The fundamental RGA assumption is that each small-volume element
of the scattering object is excited only by the incident field. The scattered
field is then computed from (30) after substituting E(r′) = Einc(r′). The
anomalous diffraction approximation (ADA) was introduced by van de Hulst
(1957) as a means of computing the extinction cross section for large, opti-
cally soft spheres with x � 1 and |m − 1| � 1. Since the second condition
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means that rays are weakly deviated as they cross the particle boundary and
are negligibly reflected, ADA assumes that extinction is caused by absorption
of light passing through the particle and by the interference of light passing
through and around the particle.

The practical importance of approximate theories diminishes as various
exact techniques mature and become applicable to a wider range of prob-
lems, while computers become ever more powerful. However, approximate
theories still remain a valuable source of physical insight into the process of
scattering and absorption by nonspherical particles (Baran et al. 1998; Jones
1999; Kokhanovsky 2001). Furthermore, it is likely that at least one approx-
imation, the geometrical optics method, will never become obsolete because
its accuracy only improves as the particle size parameter grows, whereas all
exact theoretical techniques for nonspherical particles cease to be practical
when the size parameter exceeds a certain threshold.

The geometrical optics approximation (GOA) (otherwise known as the
ray-tracing or ray optics approximation) is a universal method for comput-
ing electromagnetic scattering by arbitrarily shaped particles with sizes much
larger than the wavelength of the incident light. GOA assumes that the in-
cident plane wave can be represented as a collection of independent parallel
rays. The history of each ray impinging on the particle surface is traced us-
ing Snell’s law and Fresnel’s formulas. Each incident ray is partially reflected
and partially refracted into the particle. The refracted ray may emerge af-
ter another refraction, possibly after one or more internal reflections, and
may be attenuated by absorption inside the particle. Each internal ray is
traced until its intensity decreases below a predefined cutoff value. Vary-
ing the polarization state of the incident rays, sampling all escaping rays
into predefined narrow angular bins, and adding incoherently the respective
Stokes parameters yields a quantitative representation of the particle scatter-
ing properties in terms of the ray-tracing phase matrix ZRT. Because all rays
impinging on the particle surface are either scattered or absorbed irrespec-
tive of their polarization state, the ray-tracing extinction matrix is always
diagonal and is given by KRT = CRT

ext∆. The ray-tracing extinction cross sec-
tion CRT

ext does not depend on the polarization state of the incident light and
is equal to the geometrical area G of the particle projection on the plane
perpendicular to the incidence direction. Since the presence of the particle
modifies the incident plane wave front by eliminating a part that has the
shape and size of the geometrical projection of the particle, the ray-tracing
scattering pattern must be supplemented by the computation of Fraunhofer
diffraction of the incident wave on the particle projection. The diffraction
component of the phase matrix ZD is confined to a narrow angular cone
centered at the exact forward-scattering direction and is usually computed
in the Kirchhoff approximation (Jackson 1998), thereby contributing only
to the diagonal elements of the total phase matrix. The diffraction com-
ponent KD of the total extinction matrix is equal to KRT. We thus have
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ZGO = ZRT + ZD = ZRT + ZD11∆, KGO = KRT + KD = CGO
ext ∆, where

CGO
ext = CRT

ext + C
D
ext = 2G. The total scattering cross section is the sum of

the ray-tracing and diffraction components: CGO
sca = CRT

sca + CD
sca. Since the

diffracted energy is not absorbed, the diffraction scattering cross section is
equal to the diffraction extinction cross section: CD

sca = CD
ext = G. The ray-

tracing scattering cross section CRT
sca is found from ZRT and (76).

The main advantage of GOA is that it can be applied to essentially any
shape. However, this technique is approximate by definition, and its range of
applicability in terms of the smallest size parameter must be checked by com-
paring GOA results with exact numerical solutions of the Maxwell equations.
It appears that although the main geometrical optics features can be qualita-
tively reproduced by particles with size parameters less than 100, obtaining
good quantitative accuracy in GOA computations of the phase matrix still re-
quires size parameters exceeding a few hundred (Wielaard et al. 1997). Even
then GOA fails to reproduce scattering features caused by interference and
diffraction effects (Hansen and Travis 1974; Mishchenko and Macke 1998).
To improve GOA, Ravey and Mazeron (1982) (see also Muinonen 1989; Liou
et al. 2000) developed the so-called physical optics or Kirchhoff approxima-
tion (KA). This approach is based on expressing the scattered field in terms
of the electric and magnetic fields on the exterior side of the particle sur-
face. The latter are computed approximately using Fresnel formulas and the
standard ray-tracing procedure. KA partially preserves the phase informa-
tion and reproduces some physical optics effects completely ignored by the
standard GOA.

9 Measurement Techniques

Existing measurement techniques fall into two categories: (i) scattering of vis-
ible or infrared light by particles with sizes from several hundredths of a mi-
cron to several hundred microns; and (ii) microwave scattering by millimeter-
and centimeter-sized objects. Measurements in the visible and infrared bene-
fit from the availability of sensitive detectors (photomultipliers and avalanche
semiconductor photodiodes), intense sources of radiation (lasers), and high-
quality optical elements. They involve cheaper and more portable instrumen-
tation and can be performed in the field as well as in the laboratory. By
contrast, microwave scattering experiments require more cumbersome and
expensive instrumentation and large measurement facilities.

Many detectors of electromagnetic energy are polarization-insensitive: the
detector response is determined only by the first Stokes parameter of the
beam impinging on the detector. Therefore, in order to measure all elements
of the scattering matrix one must use various optical elements that can vary
the polarization state of light before and after scattering in a controllable way.
In Fig. 5 (adapted from Hovenier 2000), the beam produced by a laser passes
through a linear polarizer and a polarization modulator and then illuminates
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Fig. 5. Scheme of an experimental setup employing visible light.

particles contained in the scattering chamber. Light scattered by the particles
at an angle Θ passes a quarter-wave plate and a polarization analyzer, after
which its intensity is measured by a detector. The Stokes vector of the beam
reaching the detector, I′, is given by I′ ∝ AQF(Θ)MPI = AQN〈F(Θ)〉MPI,
where I is the Stokes vector of the beam leaving the light source, A,Q,M and
P are 4 × 4 Mueller transformation matrices of the analyzer, quarter-wave
plate, modulator, and polarizer, respectively, F(Θ) is the total scattering
matrix of the particles contributing to the scattered beam, N is the num-
ber of the particles, and 〈F(Θ)〉 is the ensemble-averaged scattering matrix
per particle. It is assumed that the scattering plane serves as the reference
frame for defining the Stokes parameters. The Mueller matrices of the polar-
izer, modulator, quarter-wave plate, and analyzer depend on their orientation
with respect to the scattering plane and can be precisely varied. Because the
detector measures only the first element of the Stokes vector I′, several mea-
surements with different orientations of the optical components with respect
to the scattering plane are required for the full determination of the scatter-
ing matrix. This procedure is repeated at different scattering angles in order
to determine the angular profile of the scattering matrix.

Early measurements of the scattering matrix used a simple subtraction
method which relied on pairs of intensities measured separately with differ-
ent combinations of polarizing elements; the results were subtracted in order
to obtain the scattering matrix elements. This technique has low accuracy
because of the need to determine small differences between two large signals.
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The measurements of the two large signals are separated in time and imply
that the sensitivity of the detector and the scattering sample (e.g., the num-
ber N of scattering particles) do not change with time, which is often not the
case. Hunt and Huffman (1973) developed the technique of a high-frequency
sinusoidal modulation in time of the polarization of light before scattering
(Fig. 5) combined with intensity normalization. Followed by lock-in detec-
tion, this technique increases the experimental accuracy by enabling direct
measurements of the scattering matrix elements normalized by the (1, 1) el-
ement and yields the capability to determine several elements from only one
detected signal.

Measurements at visible and infrared wavelengths often suffer from the
lack of accurate independent characterization of particle size and morphol-
ogy, which makes it difficult to compare experimental and theoretical results.
The number of particles N contributing to the scattered beam is also seldom
known, which precludes the absolute measurement of the (1, 1) element of
the ensemble-averaged scattering matrix per particle 〈F(Θ)〉 [measurements
of the elements other than the (1, 1) element are usually reported in the
form of N -independent ratios of the elements to the (1, 1) element]. Another
drawback is that the arrangement of the source of light and the detector usu-
ally precludes measurements at scattering angles close to 0◦ and 180◦. This
makes problematic the absolute measurement of the phase function by means
of satisfying the normalization condition (108). In consequence, experimental
phase functions are often normalized to the value at a fixed scattering angle.

The error of deriving the scattering cross section per particle by integrat-
ing the scattered intensity over all scattering angles also relies on the knowl-
edge of N and depends on how much of the forward- and back-scattered
energy is not detected (Anderson et al. 1996). The phase function of parti-
cles larger than the wavelength has a strong and narrow diffraction peak that
may contain more than 50% of the total scattered energy. This factor alone
can cause errors in the measured scattering cross section exceeding 50%. The
extinction cross section is often determined by measuring the attenuation of
directly transmitted beam. Specifically, the extinction cross section is propor-
tional to the difference of the readings of detector 1 in Fig. 3 corresponding to
the situations without and with the particles interposed between the source
of light and the detector (Section 3). This measurement unavoidably suffers
from the problem that a detector with a finite aperture picks up some of
the light scattered by the particles in the forward direction. Depending on
the average particle size and thus the magnitude and angular width of the
diffraction component of the phase function, the extinction can be underesti-
mated by as much as a factor of 2. With potentially significant errors in the
extinction and scattering cross sections, little may be said about the differ-
ence of the former and the latter, i.e., the absorption cross section, and the
ratio of the latter to the former, i.e., the single-scattering albedo.
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An instrument specifically designed for measurements at the exact back-
scattering direction is a lidar composed of a laser emitting a powerful beam
and a receiving telescope-detector combination affixed to the laser (Sassen
2000; also the chapter by Gobbi). The laser beam is usually polarized ei-
ther linearly (P = 1, V = 0) or circularly (P = 1, V = ±I). The laser light
scattered by aerosol and cloud particles is collected by the telescope, and its
intensity and polarization characteristics are precisely measured. Since lidars
measure backscattering from particles located at large distances from the
instrument, the scattering angle can be made arbitrarily close to 180◦. Im-
portant quantities measured by a polarization lidar are so-called linear and
circular depolarization ratios. Because both ratios vanish for spherically sym-
metric scatterers, finite measured ratios may directly indicate the presence
of nonspherical particles.

Measurements of scattering properties of millimeter- and centimeter-sized
objects at microwave frequencies are important for such applications as re-
mote sensing of precipitation and communication technology (Aydin 2000;
Haferman 2000). In addition, the scale invariance rule (Section 6) states that
particle size in the theoretical formulation of electromagnetic scattering is
only encountered as a ratio to the wavelength. Therefore, the main idea of
the microwave analog technique is to manufacture a centimeter-sized scatter-
ing object with desired shape and refractive index, measure the scattering of
a microwave beam by this object, and finally extrapolate the result to other
wavelengths (e.g., visible or infrared) by keeping the ratio size/wavelength
fixed (Gustafson 2000).

In a modern microwave scattering setup, radiation from a transmitting
conical horn antenna passes through a collimating lens and a polarizer. The
lens produces a nearly flat wave front which is scattered by an analog par-
ticle model target. The scattered wave passes through another polarizer and
lens and is measured by a receiving horn antenna. The receiver end of the
setup can be positioned at any scattering angle from 0◦ to Θmax ∼= 170◦,
thereby providing measurements of the angular distribution of the scattered
radiation. By varying the orientations of the two polarizers, one can measure
all elements of the scattering matrix. Microwave measurements allow a much
greater degree of control over the target size, shape, and orientation than op-
tical/infrared measurements. Therefore, the results of controlled laboratory
measurements at microwave frequencies can be easily compared with theory.
Using special techniques, even the extinction cross section can be measured.
Furthermore, it is possible to add the backscattering measurement capability
(Θ = 180◦) by using the transmitting antenna as a receiver. A disadvantage
of microwave measurements is that they can be performed only for one parti-
cle size, shape, and orientation at a time, thereby making ensemble averaging
a time-consuming procedure. Various experimental aspects of the microwave
analog technique were reviewed by Gustafson (2000).
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A special class of instruments providing active polarization measurements
for remote targets at microwave and radiowave frequencies are radars (Ay-
din 2000; Bringi and Chandrasekar 2001). Monostatic radars use the same
antenna to transmit and receive electromagnetic waves and, therefore, are
limited to measurements at the exact backscattering direction (Θ = 180◦).
Bistatic lidars use one or more additional receiving antennas which provide
supplementary information for other scattering angles.

10 Effects of Nonsphericity on Scattering Patterns

The most fundamental effects of particle nonsphericity on electromagnetic
scattering are that the extinction matrix does not, in general, reduce to a
direction- and polarization-independent scalar, the extinction, scattering, and
absorption cross sections depend on the direction and polarization state of
the incident beam, and the scattering matrix does not have the Lorenz-Mie
structure given by (105). In general, all 16 elements of the scattering matrix
can be nonzero and depend on the orientation of the scattering plane. Any
of these effects can directly indicate the presence of nonspherical particles.

When nonspherical particles are randomly oriented and form a micro-
scopically isotropic and mirror symmetric scattering medium (Section 5), the
extinction matrix does degenerate to the scalar extinction cross section, and
all optical cross sections become orientation- and polarization-independent.
Moreover, the corresponding scattering matrix (89) possesses almost the same
structure as the Lorenz-Mie scattering matrix. However, the remaining fun-
damental difference is that the (2, 2) element of the scattering matrix may
differ from to the (1, 1) element and the (4, 4) element may differ from the
(3, 3) element. This is demonstrated in Fig. 6, which depicts the elements
of the normalized scattering matrix given by (106) for a narrow power law
size distribution of spheres and surface-equivalent, randomly oriented oblate
spheroids with an aspect ratio of 1.7 (Mishchenko et al. 1996b). The refractive
index is 1.53 + 0.008i and the effective size parameter of the size distribution
is 15. The computations were performed using the conventional Lorenz-Mie
theory for spheres and the T -matrix method for spheroids (Mishchenko and
Travis 1998).

Besides this qualitative difference which unequivocally distinguishes ran-
domly oriented nonspherical particles from spheres, Fig. 6 also shows signif-
icant quantitative spherical-nonspherical differences. For example, the phase
function for spheroids exhibits an enhanced side-scattering and a suppressed
backscattering. The degree of linear polarization for unpolarized incident light
PQ = −b1/a1 for spheroids is positive at side-scattering angles and is neg-
ative for spheres. These conclusions are supported by systematic theoretical
surveys of light scattering by ensembles of Chebyshev particles (Wiscombe
and Mugnai 1988), spheroids (Mishchenko et al. 1996b), finite circular cylin-
ders (Mishchenko et al. 1996a), and polycrystals (Takano and Liou 1995;
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Fig. 6. Phase function and normalized scattering matrix elements for a power law
size distribution of spheres and randomly oriented spheroids. The refractive index
is 1.53 + 0.008i and the effective size parameter of the size distribution is 15.

Macke et al. 1996). Spherical-nonspherical differences in the elements of the
scattering matrix are maximal for nonabsorbing particles and diminish with
increasing absorption. Although differences in the optical cross sections, sin-
gle scattering albedo, and asymmetry parameter can also be noticeable, they
are usually much smaller than the differences in the elements of the scattering
matrix. This does not apply, however, to particles with extreme aspect ratios
(e.g., Zakharova and Mishchenko 2000, 2001).

Clusters of small monomers form a special class of nonspherical parti-
cles. Although scattering properties of randomly oriented two-sphere clusters
closely resemble those of a single sphere (Mishchenko et al. 1995), the ef-
fect of cooperative phenomena in many-particle clusters can be very strong
(Mackowski and Mishchenko 1996). Scattering properties of clusters are often
a combination of those for a single monomer and those for a solid particle
circumscribing the cluster and having the same average projected area (e.g.,
West 1991; Lumme 2000).

The ability to compute scattering by a specific shape does not neces-
sarily mean the ability to theoretically reproduce scattering properties of
real ensembles of nonspherical particles. More often than not, natural and
artificial particle samples exhibit a great variety of shapes, thereby mak-
ing questionable the potential of a single nonspherical shape to represent
scattering properties of a particle ensemble. It can be demonstrated indeed
that even after size and orientation averaging, essentially any particle shape
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Fig. 7. Phase functions computed for a broad shape distribution of polydisperse
spheroids and surface-equivalent spheres and measured by Jaggard et al. (1981) for
natural wavelength-size soil particles.

produces a unique, shape-specific scattering pattern, whereas experimental
measurements for real nonspherical particles usually show smooth, featureless
patterns (e.g., Perry et al. 1978; Volten et al. 2001). Therefore, in theoretical
computations, specific details of scattering patterns generated by various dis-
crete shapes should be suppressed by averaging over a representative shape
distribution. For example, the phase function shown in Fig. 7 by the solid
curve was computed for a wide aspect-ratio distribution of micron-sized pro-
late and oblate spheroids with an index of refraction of 1.53 + 0.008i typical
of dust-like aerosols at visible wavelengths. Unlike the phase function de-
picted by the dotted curve in Fig. 6 and calculated for spheroids with a fixed
aspect ratio, the phase function for the shape distribution of spheroids is very
smooth and featureless and, in fact, almost perfectly coincides with the phase
function experimentally measured by Jaggard et al. (1981) for micron-sized
irregularly shaped soil particles (Mishchenko et al. 1997).

This example may have two important ramifications. First, it suggests
that the smooth scattering-angle dependence of the scattering matrix el-
ements often observed for ensembles of natural and artificial nonspherical
particles is caused by the diversity of particle shapes. Second, it may indi-
cate that at least some scattering properties of irregular particles could be
modeled using a shape mixture of simple particles such as spheroids. The as-
sumption that particles chosen for the purposes of ensemble averaging need
not be in one-to-one correspondence with the ensemble of irregular particles
in hand and may have relatively simple shapes is central to the so-called sta-
tistical approach (Wiscombe and Mugnai 1988; Bohren and Singham 1991).
The attractiveness of this approach is explained by the fact that it is often
impossible to exactly specify the shapes and sizes of all particles forming
a natural or artificial sample. Even if it were possible, the low efficiency of
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the exact numerical scattering techniques applicable to arbitrarily shaped
particles would require an enormous computational effort. The availability of
techniques like the T -matrix method, which is very fast for randomly oriented
rotationally symmetric particles and is applicable to large size parameters,
makes the statistical approach quite practical (Hill et al. 1984; Mishchenko
et al. 1997). Another plausible approach is to assume that scattering prop-
erties of an ensemble of irregular particles can be reproduced by mixing only
a few statistically representative particle models created by a numerical ran-
dom shape generator. This approach was pursued by Peltoniemi et al. (1989),
Macke et al. (1996), and Muinonen (2000) by applying GOA to particles much
larger than a wavelength and by Lumme (2000), who applied VIEM to par-
ticles with size parameters smaller than 6. Although this approach is more
time-consuming and has a limited size parameter range, it may find more
applications as computers become more powerful and methods like FEM,
FDTDM, and VIEM become more efficient.

11 Remote Sensing and Radiation Balance Applications

Nonsphericity can significantly affect the results of remote sensing retrievals
of mineral tropospheric aerosols. Indeed, large spherical-nonspherical phase
function differences (Fig. 7) can result in an underestimation or an over-
estimation of the optical thickness if satellite reflectance measurements
for dust-like tropospheric aerosols are analyzed using the Lorenz-Mie the-
ory (Mishchenko et al. 1997; Kahn et al. 1997). The quantity directly
entering the lidar equation is the so-called extinction-to-backscatter ratio
Reb = Cext/Cscaa1(π) (Reagan et al. 1989; Stephens 1994; also the chap-
ter by Gobbi). The dashed curve in Fig. 8 (adapted from Mishchenko et al.
1997) demonstrates that spherical-nonspherical differences in Reb can be very
large and can cause lidar retrievals of the optical thickness for nonspheri-
cal aerosols based on the Lorenz-Mie theory to be unreliable. Nonspheric-
ity can change not only the magnitude of the degree of linear polarization
PQ(Θ) = −b1(Θ)/a1(Θ), but even its sign (Mishchenko 1996b) thereby af-
fecting polarimetric retrievals of dust-like tropospheric aerosols (Deuzé et al.
2000).

Despite the potentially strong effect of nonsphericity on aerosol remote
sensing, the shape effect on the direct aerosol forcing of climate is rather weak.
This means that if the optical thickness of nonspherical aerosols can be reli-
ably determined, then the aerosol radiative forcing can be computed with high
accuracy using the model of surface-equivalent spheres (Lacis and Mishchenko
1995). This result can be explained by small spherical-nonspherical differences
in the aerosol single-scattering albedo and asymmetry parameter (Fig. 8). It
is important to emphasize, however, that no cancellation of errors occurs if
one consistently uses the Lorenz-Mie theory in retrieving the aerosol optical
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Fig. 8. Ratios of single-scattering characteristics of a shape mixture of polydisperse,
randomly oriented spheroids to those of surface-equivalent spheres. The refractive
index is 1.53+0.008i.

thickness and then in computing the aerosol radiative forcing for the retrieved
optical thickness value.

Another radiatively important type of nonspherical particles in the atmo-
sphere are cirrus ice crystals. In some cases, cirrus clouds exhibit remarkable
optical phenomena such as halos, thereby indicating that ice crystals have
regular shapes such as single or aggregated hexagonal columns and plates
(Macke 1993; Takano and Liou 1995). However, for many cirrus clouds the
halos are not seen even under suitable observation geometries and the ice
particle phase function appears to be rather featureless (e.g., Francis 1995;
Gayet et al. 1998). One way to model a featureless phase function is to as-
sume that ice particles lack the perfect hexagonal structure and occur in a
wide variety of shapes and to use the statistical approach outlined in the
previous section. Another approach is to model scattering properties of a
random ensemble of different shapes using a few randomly shaped particles
and employing GOA (Macke et al. 1996; Muinonen 2000). Figure 9 com-
pares phase functions computed at λ = 0.65µm for the ISCCP water droplet
model (Rossow and Schiffer 1999), regular hexagonal ice columns, and ran-
domly shaped ice particles modeled as a randomized triadic Koch fractal
(adapted from Mishchenko et al. 1996c). It is seen that the random-particle
phase function is relatively featureless and does not show halos specific of
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hexagonal crystals and pronounced rainbow and glory features exhibited by
spherical water droplets. The differences in the phase functions depicted in
Fig. 9 are even greater than those shown in Fig. 7 and produce much larger
differences in the retrieved cirrus-cloud optical thickness (Mishchenko et al.
1996c).

Fig. 9. Phase functions for the ISCCP water droplet model, hexagonal ice columns,
and randomly shaped ice particles.

The effect of nonsphericity on the cirrus cloud radiative forcing can also
be much stronger due to significantly larger spherical-nonspherical differences
in the single-scattering characteristics. Figure 10 (adapted from Mishchenko
et al. 1996c) shows that the global albedo of a liquid-water cloud at solar
wavelengths can be significantly smaller than that of an optical-thickness
equivalent ice cloud composed of hexagonal crystals and much smaller than
that of an ice cloud composed of randomly shaped crystals. This result is
explained by the fact that the asymmetry parameter for the randomly shaped
crystals (0.752) is smaller than that for the hexagonal columns (0.816) and
much smaller than that for the ISCCP water droplets (0.862) and emphasizes
the importance of exact knowledge of the asymmetry parameter for real cirrus
cloud particles. The potentially strong effect of nonsphericity on the cirrus
cloud radiative forcing makes important accurate parameterizations of ice
particle scattering properties. For example, the parameterization by Fu (1996)
is based on the regular hexagonal crystal model, whereas Mitchell et al. (1996)
use both hexagonal and random-fractal shapes.
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Fig. 10. Global albedo of a liquid water cloud relative to that of an optical-
thickness-equivalent ice cloud composed of randomly shaped particles (dotted
curve) and hexagonal columns (solid curve). The wavelength is 0.65 µm.

The fact that the Lorenz-Mie equalities a2(π) = a1(π) and a4(π) =
−a1(π) do not, in general, hold for nonspherical particles makes measure-
ments of the linear depolarization ratio δL = [a1(π) − a2(π)]/[a1(π) +
a2(π)] and the circular depolarization ratio δC = [a1(π) + a4(π)]/[a1(π) −
a4(π)] = 2δL/(1 − δL) the most reliable indicators of particle nonsphericity
(Mishchenko and Hovenier 1995; Sassen 2000; also the chapter by Gobbi).
Figure 11 shows the results of T -matrix computations of δL for a power law
size distribution of randomly oriented nonspherical ice particles with a re-
fractive index of 1.311 (Mishchenko and Sassen 1998). For spheroids, ε is the
ratio of the largest to the smallest semi-axes. The shapes of prolate and oblate
cylinders are specified by length-to-diameter and diameter-to-length ratios,
respectively. The shape of second-order Chebyshev particles in a spherical
coordinate system is described by the equation R(ϑ, ϕ) = R0(1 + ε cos 2ϑ),
where ε is a deformation parameter specifying the maximal deviation of the
particle shape from that of a sphere with radius R0 (Wiscombe and Mugnai
1988). This figure demonstrates that an interesting feature of the linear de-
polarization ratio for essentially all shapes considered is a rapid increase with
increasing effective size parameter from 0 to about 5. This feature has been
used for sizing aircraft condensation trail (contrail) particles using multi-
wavelength lidar measurements (Sassen et al. 2001). Maximal δL values for
most shapes are observed at effective size parameters close to and sometimes
smaller than 10. Since geometrical optics concepts of rays, reflections, and
refractions are inapplicable to wavelength and sub-wavelength sized particles,
our computations suggest that multiple internal reflections in very large par-
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Fig. 11. Linear depolarization ratio versus effective size parameter for polydisperse,
randomly oriented particles of different shapes. The refractive index is 1.311.

ticles, as discussed by Liou and Lahore (1974), are not the only mechanism
of producing depolarization and not necessarily the mechanism producing
maximal δL values. For example, the peak δL value for polydisperse prolate
spheroids with ε = 1.2 is close to 0.7 and is reached at xeff as small as
12.5. The computations also show that although nonzero depolarization val-
ues directly indicate the presence of nonspherical particles, there is no simple
relationship between δL and the degree of particle asphericity (i.e., ratio of
the largest to the smallest particle dimensions). Even spheroids with ε as
small as 1.05 (2.5% deviation from the perfect spherical shape) and Cheby-
shev particles with |ε| as small as 0.02 already produce strong depolarization.
The largest δL values are produced by prolate spheroids with an aspect ratio
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as small as 1.2 and Chebyshev particles with ε as small as 0.08–0.10 (8–10%
deviation from a sphere). Furthermore, δL for spheroids and, especially, cylin-
ders seems to saturate with increasing aspect ratio. Also of interest is that
smooth scatterers (spheroids and Chebyshev particles) produce depolariza-
tion ratios comparable to and even exceeding those for sharp-edged cylinders.

The strong sensitivity of polarization and depolarization on the physi-
cal characteristics of scattering particles has been widely employed in re-
mote sensing studies. Mishchenko and Sassen (1998) used the computations
shown in Fig. 11 to explain the frequent occurrence of large δL values for
very young contrails. Gobbi et al. (1998), Reichardt et al. (2000), and Liu
and Mishchenko (2001) analyzed lidar depolarization observations of polar
stratospheric clouds. Sassen (2000) and Aydin (2000) reviewed the use of li-
dar and radar backscattering depolarization measurements for characterizing
aerosol and cloud particles and precipitation. Liou et al. (2000) discussed the
potential of polarimetry in remote sensing of cirrus clouds, while Quinby-
Hunt et al. (2000) described multiple applications of polarimetry in remote
sensing of the marine environment.

Many other geophysical applications of electromagnetic scattering by non-
spherical particles are discussed in the book edited by Mishchenko et al.
(2000a), in the September/December 1999 issue of the Journal of Quantita-
tive Spectroscopy and Radiative Transfer, and in the 27 December 1999 issue
of the Journal of Geophysical Research – Atmospheres.
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